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EFFECTS OF MACH NUMBER AND SWEEP ON THE DAMPING-IN-ROLL
CEARACTERISTICS OF WINGS OF ASPECT RATIO k

By Richard E. XKuhn and Boyd Ce. Myers, IT
S‘[JMB{LARY

The demping-in-roll characteristics of three wings with an aspect
ratio of 4, a taper ratio of 0.6, sweep angles of 3.6°, 32.6°, and 46.7°
at the quarter-chord line, and with the NACA 65A006 section have been
determined through the Mach number range from O.k to 0.91 and angle-of-
attack range from 0° to 6.5° in the Langley high-speed T7- by 10-foot
tunnel by the free-roll methcd. The results Indicated that the Increase
in magnitude of the damping-in-roll coefficient Czp with Mach number
end the decrease wilth sweep angle, at low angles of atback, agreed well
with the theoretical variations. The demping coefflcient increared
markedly with angle of attack (in the test range) particularly at the
bhigher Mach numbers investlgatsd.

INTRODUCTION

Low-speed experimental data and theory (references 1 and 2) indicate
en appreciaeble reduction in the dempling-in-roll properties of a wing as
the sweep angle is increased. The thesoretical manner in which these
effects are affected by compressibility is treated in references 2
end 3. Little experimental data, however, are available at high-
subsonlic Mach numbers for caomparison with theory. Accordingly, an
extensive Investigation 1s belng conducted In the Langley high-speed
T- by 10-foot tunnel to determine the effects of sweep angle and Mach
nunber on the damping-in-roll characteriastics of a serles of wings. The
first wing investigated was a 35° sweptback wing of aspect ratio 3, and
the deamping-in-roll characteristics of this wing at hlgh-subsonic Mach
mmbers are presented in reference L.

The present paper presents the resulis of an experimental determi-
nation of the demping-in-roll characteristics of three wings of aspect
ratio 4 and taper ratio 0.6 with sweep angles of 3.6°, 32.6°, and 46.7°
referred to the quarter-chord line. The investlgation utilized the
froe-roll technique described in reference 4, and the tests were made
at angles of attack of 0.30°, 3.45°, and 6.56 through a Mach number

CONFTUENTTAL UNCLASSIFIED
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range fram 0.1{-0 to 0.91,__ This paper also includ.es a camparlson wlth
theoretical results computed from Weissinger 8 ‘theory as presented in
reference 2 and fram the more approximate, but more convenient, theory
of reference 3.

-

COEFFICIENTS AND SYMBOIS

A wing aspect ratio

a speed of sound, feet per sécond

b wing span, (3.000 £t on model) _

c! mean aei'ody:'iém:-l.c chord (M.A.C.; 0.765 £+ on model)

Cy rolling-moment coefficient. (T./gSb)

Clp coefficien'b of dam.ping In roll < a@’))

L _ ro]_'l.ing moment, £t-1b )

M free-stream Mach number (V/a) ------
P 'ra'b_e of roll, rad.ians per second

q dynemic pressui'e , pounds pér sqﬁare fo&b (pv2 /2)

Ag fy, sweep angle, qégz'eeg_ (refei'red__ $o0 25 percetit chord)

R  Reynolds mumber (pVc'/u)

s w:l_ng area (2 .25_ sq £t on m.é;d.el) -
v :E'ree-stream velocity, Peot per second. B
' p mass denslty of atr, _slugs per cubic foot

*! sbgolute viscosi'!:y P pomd—seconds per sgua:re foot~

o engle of a‘btack of wing, d.egrees

5 control-surface deflection with reference o wing chord lins -

parallel to plane of symmetry, degrees
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€ angle of attack of wing-tlp chord relatlive to root chord,
radians

b2V wing-tip hellx angle, radians
ac, '
CZG =35

a(Lb
V./3 9%

X correctlion factor for wing distortion due to bending
Subscripts:

as left alleron

ap right aileron

testh measured values, uncorrected for distortion dus to bending

MODET. AND APPARATUS

The pertinent dimensions of the three wlngs used In the present
investigation are glven In figure 1. The wings woere comstructed of an
aluminum alloye. The sweptback wings were deslgned by shearing the
unswept wing; that 1s, the chordwlse elements of the umswept wing
parallel to the plene of symmstry were moved reerward wmtil the desired
gweep angle of the 25-percent-chord iine was obtalned. Thus, all wing
sections parallel to the plene of symmetry are NACA 65A006 sectlons.

The allerons were trus-contour, sealed-gap, plan flaps of 20 percent
chord and 40 percent span.

The wings were supported by a sting extending farward into the
tost section from a vertical strut located behind the model. The
vertical strut was part of the wind-tummel balance system and both the
strut and a portion of the sting were shielded from the air stream by a
falring. A schematlc drewing of the support system and rolling apparatus
ls shown in figure 2. The angle of attack of the model was changed by
varying the angle of Incldence of the wing relatlve to the sting. This
was accomplished by ubilizing various incidsnce blocks fitted into the
sting. A photograph of the Installation is shown in figure 3. The
rolling-moment date wore obtalned from wind-tunnel balance measuremsnts
with the sting restrained in roll. When the model was permitted to
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roll freely under the moment created by the deflected éilerons, the
rate of roll was recorded electrically.

"~ THSTS AND PROCEDURE

Scope

For each wing, static rolling-moment data and rates of roll were
dbtained through a Mach number range of O.4 to 0.91 at angles of attack
of 0.30°, 3.45%, and 6.50° and for aileron deflections of 0°, +4°,
ard +8° in a plane parallel to the plane of symmetry. The ailerdns
were deflected oppositely so that the total differential ailleron
deflections used were 0°, 8°, amnd 16°.

. The size of the model used in the present Investigation resulted
in an estimated choking Mach number of Q.9%, and the data are belleved
to be relliable to a corrscted Mach number of sbout 0.91. The varilation
of test Reynolds number with Mach number for averege test conditlons is

presented in figure L.

Corrections

A small tare correction in the form of-bearing friction was deter-
mined by forced rotation of the rolling apparatus, under both vertlcal
‘end horizontal loads, for the renge of angilar velocltles encountered
in the tests, This bearing frictlon has been applied to the results in

valus of CzP = -0. 005 o

The rolling moment end Mach mumbers have been corrected for blocking

by the model and its wake by the method of reference 5. The Jet-boundary
effects wore estimated and found to be negligible.

The alumimm-alloy wings were known to bend under load. Accordingly,

the effect of wing dlstortion on the test results was investigated. The
possible sources of error, considered were: (l) deflectlion of the
ailerons under loasd; (2) twilst of the wing about its elastic axls due

to the serodynsmic forces being applied at some distance from the
elastic axis; emd, (3) the spanwise change in angle of-attack due to
bending of the wing panel umder the span-load distribution. The error
due to this last consideration is essentially zero, of course, for an

msevwept wing bub increases very markedly as the sweep anglq’is increased.__

Ry
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Static loading of the aillerons and calculations of the twist of the
wing indicated that errors arising from points (1) and (2) are megligible}
however, calculations of the maximum change In angle of attack of +the
wing tip of the sweptback wings due to bendling of the wing panel indicate
en appreclable change in the angle. This change In angle of attack is
In such a direction as to reduce the rolling moment which 1s belng
produced by the allerons and 18 only lmportant when the model is
restralned in roll for the static tests. When the model has attained a
steady rate of roll, In the free-roll tests, the demping moment of the
wing belances the alleron rolling moment. In this comdltion ths lateral
center of pressure for the damplng moment and the alleron load are at
glightly different spanwise locations, and there i1s some slight dis-
tortion of the wing. This distortion is negliglble, however, when
compared with the distortiocns in the resirained comdition and the wing
can be consldered essentlally rigid during the free-roll tests.

The rolling moment Lyggt Wwhich 18 measured duxring the statlc test
is

Liegt = I8 ~ Te (1)

vhere I¢ 1s the rolling moment lost due to the bending of the wing.
This increment of rolling moment Ig¢ can be estimated by the relation

Leg = CzPGqS'b (2)

where Czp 1s the damping coefficient for the rigid wing. This

estimation involves the assumption that the angle of atback due to dis-

tortion varies linsarly from zerc at the root to ¢ at the tip. This
is not strictly correct of course, but the assumptlon is believed to
glve a good first approximation of the increment of rolling moment lost

due to 'bending-

In order to determlne ¢, the applied rolling maments DLi.g4 Wore

approximated by concentrated loads applied to the wing at the center of
load calculated on the basis of unswept-wing theary (reference 6). The
change I1n angle of atbtack at the wing tip ¢ was measured relative to
the root chord and the rate of change with rolling moment A€/ALyo 4

was determined.

Equation (2) can be written

Le = 01 i IAEst LtestaSb (3)



Substituting in equation (1) and dividing through by oSb

Cy 8 =08 -0Cy 5<Cz
Btent 5 8tes_t

Dividing through by 5 and transPOBing teorms gives

. .. A¢
czﬁ - Czatest[l o E>qu]

Cq. = KC
s _ za'best
w.here

=1 +hCzI(££-qu

g
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glves

(k)

()

(6)

(N

_Eguation'(T) involves the use of the Cip, for the rigld wing
which has not been determined. However, a flrst approximatlion of GzP

can be obtalned by

C
Ptest <

By ueing thie velue of Oyp . in ofuations (7) emd (6) e first
approximation of K and C3y can be obtained. With this value

of C1g, & second approximation of Cip 1s found end thus, by
succesgslive approximations, the final value of X was determined

(rig. 5).

Reduction of Data

By use of the correction facﬁor K 'de§eloped in +the previous
sectlon, the alleron~effectiveness parameter Cis &and the coefficlent

of damping in rell CZP were evaluated as follows:
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CZB - Kczatest

and

o = 3C, _ Cis
TR &)

where the expressions C end (pb/2V were evaluated graphically
"Brest ®

as the slopee of the statlic rolling-moment coefflicient C; plotted
against alleron deflection & and the nondimensional steady rate of

rolling pb/2V plotted against aileron deflection 8, respectively.
This mesthod of determining Czp essumes that the effects of rolling

on Cpy are megligible (except for distortion corrections previously
discussed) and that Czp is Independent of aileron deflection.

RESULTS AND DISCUSSION

The results of the investligation are presented in the following
figures:

Figures

Rolling-moment dabt@ « « o o o ¢« o & o o o a o o ¢ o o ¢ « « o 6,7, 8
Froe-roll dat@ « ¢ ¢ ¢ « o« ¢ o o o ¢ o s o o s s 0 s s s« «9, 10, 11
Summery data:
Variation with Mach number . . » « « « « & o &+ « « + . . 12, 13, 1k
Variation wibth 8weeD + « & ¢« ¢ ¢ ¢ o ¢ 4 s ¢ s o o o ¢ s o0 « « 15

The exXperimental variatlon of the damping-in-roll parameter CZP

with Mach mumber at low angles of attack (figs. 12 to 14) shows am
increase in magnitude of CZP with increasing Mach number for all

three wings end agrees well wlth the theoretlical variation according

to reference 2. However, the theory slightly wnderestlmates the
abgsolute magnitude of the damping coefflclent throughout the rangs. The
theoretical varlation according to reference 3 (based on the Czp at
zero Mach nmumber from reference 2) predicts the absolute values

falrly well but shows a greater varlation wlth Mach number.

Crose plots of the test data ageinst sweep at several Mach numbers
(fig.. 15) indicate an apprecilable reduction in the demping coeffi-
clent Ci,, with increasing sweep angle and compares very well with the
theoretical variation (refeorence 2) at low angles of attack.
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It will be noted that for the renge tested 'CZP increases

appreciably wilth angle of-attack, particularly at the higher Mach numbers.
A similar effect was noted in reference k. The linearized theory, how-
ever, does not predict any variation of C3, with angle of atitack
because it is evaluated In terms of 1ift rather than resultant force and
does not consider any nonlinear varlation of 1ift with angle of atteack.
The sectlon data for these wings are not avallable but a value of 2=

vag assumed for the lift-curve slope in the theoretical calculations.

A study of the effect of nonlinear 1i1ft characteristics has been made-

in reference 7 and hes indicated that this effect alone can cause large
changes in Czp

concnbsxons

On the basis of an investigation of the demping characteristics of
three wings of aspect ratio I and taper ratio 0.6 having guarter-chord
line sweep angles of 3.6°, 32.6°, and 46.7° in the Mach number range
from O.40 to 0.91, the following conclusions can be drawn:

1. The damping-in-roll coefficient C3 increased in magnitude

with Mach number and decreased with sweep angle at low angles of attack
(0.30° and 3.45°) in the same mamner as that predicted by 'bheory.

2. 'I!he msignitude of the damping-in—roll coefficien‘b 07, increased

markedly wilth angle of attack (in the test range from 0.30° to 6.5°)
par‘bicularl‘v at the higher Mach numbers.

Langley Aeronautical Laboratory o
Natlonal Advisory Committee for Aeronau’bics
Langley Alr Force Base, Va.

—

il
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. : Scule,lncﬁn ’ -
Tabulated Data .
- Wing Aileron
Area 2.25 sq.ft. Type True contfour, sealed gap
_ ‘Aspect ratio . 40 Chord 20 %¢ S,
Airfoil secfion NACA 65A 006 Span . 40% b/2 ’ '
Span 3.0t Inboard station 55% b/2
Mean aerodynamic chord O.765 ft. Outboard station 95% b2
Taper ratio 060
Root chord 1,25in
Tip chord 8.75in.

Figure 1.— A drawing of the three wings tested in the present -
- 1nve§tigation. _
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L. Tunnel ceiling

Balance strut—_

Strut fairing —.|

Sting fairing

Shaft locking
screws

Tunnel center line

Angle-of-attack “Ball thrust
changing block bearing

Tunnel floor —

T T T
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aﬁo
Scuke, Incles

Figure 2.— Schematic drawing of the free-rolling sting mounted in the Langley high-speed T-— by 10-foot-
tunnel test section.
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Figure T.— The variation with Mach number of the rolling—moment
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and 22:%)8 at several angles of attack for the 46.7° sweptback wing.
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